
1

Using Xbox Kinect V2 Within Robot

Operating System for Outdoors

Obstacle Detection

Written by

Robert Crimmins (ECE/RBE)

Advised by

Professor Alexander Wyglinski (ECE/RBE)

May 2018 – December 2018

A Directed Research Submitted to the Faculty of Worcester Polytechnic Institute in Partial

Fulfillment of the Requirements for the Degree of Master of Science.

This report represents the work of WPI graduate students submitted to the faculty as evidence

of completion of a degree requirement. WPI routinely publishes these reports on its website

without editorial or peer review. For more information about the projects program at WPI,

please see https://www.wpi.edu/academics/graduate.

https://www.wpi.edu/academics/graduate

2

Table of Contents

Cover Page

 Table of Contents

 List of Figures

List of Tables

 Chapter 1: Introduction 4

Chapter 2: Setting Up the Environment 6

Chapter 3: Calibrating the Kinect and Establishing a Bridge to ROS 10

Chapter 4: Performance and Results 19

Chapter 5: Conclusion 25

Reference URLs 26

 Appendices 31

 Appendix A: calib_color.yaml 31

 Appendix B: calib_depth.yaml 32

 Appendix C: calib_ir.yaml 33

 Appendix D: calib_pose.yaml 34

3

List of Figures

Figure 1: RGB Camera and IR Sensor Orientation on Kinect Mainboard

Figure 2: Pre-Calibration Photo – RGB and IR Sensor are Not Aligned

Figure 3: RGB Camera Calibration Example

Figure 4: IR Sensor Calibration Example

Figure 5: Physical Setup of Kinect and Calibration Photo

Figure 6: RGB Camera Calibration Sample Set

Figure 7: IR Sensor Calibration Sample Set

Figure 8: Distortion Coefficients Within the YAML Files

Figure 9: Post-Calibration Photo – RGB and IR Sensors Aligned

Figure 10: Outdoors Testing Layout

Figure 11: Height Comparison to Curb

Figure 12: Protonect Test Software Confirms Kinect Configuration

Figure 13: RViz Showing Cans vis Point Cloud ROSTopic

Figure 14: 3D Isometric View of Color Mapped Point Cloud

Figure 15: 3D Top View of Color Mapped Point Cloud

Figure 16: 3D Front View of Color Mapped Point Cloud

Figure 17: 2D Front View of Color Mapped Point Cloud

Figure 18: 2D Front View of Grayscale Point Cloud

Figure 19: 2D Front View of Infrared Raw Image

Figure 20: Protonect Viewer – Box 2 Feet Away from Kinect

Figure 21: Protonect Viewer – Box 7 Feet Away from Kinect

List of Tables

Table 1: Comparison between the Kinect V1 and Kinect V2:

4

Chapter 1: Introduction

The purpose of this directed research is to replicate the works of Javier Hernandez-Aceituno,

Rafael Arnay, Jonay Toledo, and Leopoldo Acosta with obstacle detection outdoors. The goal is

to integrate cost-effective off-the-shelf hardware to assist autonomous vehicles in navigation,

mapping, and planning. Offerings such as the Microsoft Xbox Kinect were developed with

advanced sensors at competitive prices for consumers. These devices feature wide-angle time-of-

flight cameras, active infrared sensors, and high-resolution RGB cameras. This sensor suite aligns

perfectly with the needs for low speed autonomous vehicles.

This research will be utilized on a drive-by-wire architecture golf cart being developed at the

Wireless Innovation Laboratory at Worcester Polytechnic Institute. The hardware focused on in

this paper is the Microsoft Xbox Kinect V2. Its predecessor, the Kinect V1, was released in

November 2010 and has been widely adopted by the robotics and computer vision communities.

Many hardware improvements have been made to the second-generation device as seen in the table

below:

Table 1: Comparison between the Kinect V1 and Kinect V2:

Although there are many pros associated with the second-generation Kinect, there are some

limitations of utilizing this sensor. The Kinect V2 was not widely adopted with its public debut in

February 2012 and was considered by Microsoft’s intended audience, the gaming community, as

a market failure. As of October 25, 2017, the Xbox Kinect V2 was officially discontinued and

production ceased. Furthermore, the USB 3.0 / AC adapter necessary to use this sensor was

5

discontinued in January 2018. There are very few third-party alternatives available now offering

the required adapter which makes utilization and further development more prohibitive. Despite

these hurdles, the sensor’s performance should still be researched for low speed autonomous

vehicles.

The results we are attempting to replicate are from the University of La Laguna in Spain. Their

team focused on classifying smooth, tilted, and navigable surfaces. They proved that the Kinect is

superior to other technologies such as ultrasonic sensors or stereoscopic cameras in performance.

The only downside was mitigating external light radiation which they combatted by keeping the

sensor close to ground level. They claimed at low heights the sensor could differentiate between

its own reflected infrared beams from external light radiation. For this research we will look at the

following: setting up the environment, calibrating the cameras, establishing a bridge between raw

data and Robot Operating System (ROS), and assessing the performance of the sensor.

6

Chapter 2: Setting Up the Environment

I faced many challenges in setting up the software environment and I want to express my rationale

for my implementation. Initially, I wanted to use the Xbox Kinect through an Ubuntu virtual

machine through Window’s Hyper-V. After some research, Hyper-V does not support Enhanced

Sessions, which allows direct passthrough of USB devices to an Ubuntu virtual machine. Although

there were some alternatives around this, support was minimal, and functionality was not

guaranteed due to generic devices for virtualized hardware.

I decided to go with a bare metal installation on a standalone computer to minimize some technical

issues. Due to the increasing difficulty of finding cost-effective hardware for the Kinect V2,

software development has also slowed down. I opted to use Ubuntu 14.04 LTS as others have

reported stable performance on this build. I installed Robot Operating System (ROS) for Ubuntu

Indigo from the following link:

http://wiki.ros.org/indigo/Installation/Ubuntu

using the following commands:

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release

-sc) main" > /etc/apt/sources.list.d/ros-latest.list'

sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --

recv-key 421C365BD9FF1F717815A3895523BAEEB01FA116

sudo apt-get update

sudo apt-get install ros-indigo-desktop-full

apt-cache search ros-indigo

I then initialized rosdep using the following commands:

sudo rosdep init

rosdep update

I made a small quality-of-life fix so my ROS environment variables are automatically added to

bash every time a new terminal was opened:

echo "source /opt/ros/indigo/setup.bash" >> ~/.bashrc

source ~/.bashrc

http://wiki.ros.org/indigo/Installation/Ubuntu

7

We then set up the ROS environment by ensuring the ROS_ROOT and ROS_PACKAGE_PATH is

properly set using the following command:

printenv | grep ROS

We then set up our our .sh files using the following command:

 source /opt/ros/indigo/setup.bash

We then install Catkin, which is a low-level build system macro for ROS, from the following site:

http://wiki.ros.org/catkin

using the following commands:

mkdir -p ~/catkin_ws/src

cd ~/catkin_ws/

catkin_make

echo $ROS_PACKAGE_PATH

The following should be returned in terminal:

/home/<youruser>/catkin_ws/src:/opt/ros/indigo/stacks

I then installed libfreenect2, which is an open source driver for the Kinect V2 from the following

link:

https://github.com/OpenKinect/libfreenect2

by using the following commands:

git clone https://github.com/OpenKinect/libfreenect2.git

cd libfreenect2

sudo apt-get install libfreenect

cd depends; ./download_debs_trusty.sh

sudo apt-get install build-essential cmake pkg-config

I then installed libusb, which is a C library that provides generic access to USB devices, using the

following commands:

sudo dpkg -i debs/libusb*deb

http://wiki.ros.org/catkin
https://github.com/OpenKinect/libfreenect2
https://github.com/OpenKinect/libfreenect2.git

8

I then built my directory using the following commands:

 mkdir build && cd build

cmake .. -DCMAKE_INSTALL_PREFIX=$HOME/freenect2

make

make install

I then set up my udev rules to allow for device access using the following commands:

sudo cp ../platform/linux/udev/90-kinect2.rules /etc/udev/rules.d/

I encountered an issue here where my Kinect hardware carried the “Xbox” branding, intended for

the game console, as opposed to the “Kinect for Windows” product Microsoft also produced. I had

the Xbox branded unit due to easy accessibility. To fix this, we can augment our hardware IDs

into the rules file we just created. This was recommended from the following post:

https://github.com/OpenKinect/libfreenect2/issues/193

To look for the hardware ID’s, I used the following commands:

$usb-devices

$dmesg | grep “045e”

This is where I encountered my next issue. My device was not found in the list. I came across a

post with some suggestions:

https://askubuntu.com/questions/886588/kinect-2-on-ubuntu-16-04-device-not-listed-in-lsusb

Per their recommendation, I reinstalled my dependencies and confirmed it was a USB 3.0 issue. A

user on the ROS forums recommended installing Ubuntu 14.04.2 because it has a newer kernel

version and better USB 3.0 support:

https://answers.ros.org/question/207047/kinect-v2-no-devices-connected-ive-tried-everything/

https://github.com/OpenKinect/libfreenect2/issues/193
https://askubuntu.com/questions/886588/kinect-2-on-ubuntu-16-04-device-not-listed-in-lsusb
https://answers.ros.org/question/207047/kinect-v2-no-devices-connected-ive-tried-everything/

9

This was easily done with the following command:

sudo apt-get install linux-generic-lts-wily

I repeated the $usb-devices process using the $dmesg command above and took note of my

Kinect USB device information. I searched for “045e” as the Vendor ID, which does not change

regardless of the branding on the camera. Below is the information for my device:

 VendorID: 045e

ProductID: 02c4

I then navigated to the following directory:

 /lib/udev/rules.d

I modified the following rules files based on the recommendation above:

 rules.d

40-ros-indigo-libfreenect.rules

40-libfreenect0.2.rules

I copied the formatting generated from the rules commands above and added my ProductID (02c4)

as a valid USB device to connect to. If you do not complete this step, the software later will not

detect any hardware is attached to the system.

Some of the files above are read-only or otherwise protected due to the directories that they are in.

You can circumvent these obstacles by using the following:

sudo nano <directory> / <filename>

sudo elevates permissions, and nano is an editor built into terminal which will not face issues

when saving.

We can finally test to see if libfreenect2 is properly installed by navigating to the build directory

and entering in the following command:

 ./bin/Protonect

Once that is confirmed working, we can move onto installing our bridge to ROS in Chapter 3.

10

Chapter 3: Calibrating the Kinect and Establishing a Bridge to ROS

We will now install kinect2_bridge, which will transfer the raw data from the camera to ROS

via topics. These tools are available at the following repository:

https://github.com/code-iai/iai_kinect2

We then run the following commands to clone the repository contents to our Catkin workspace we

made earlier:

cd ~/catkin_ws/src/

git clone https://github.com/code-iai/iai_kinect2.git

cd iai_kinect2

rosdep install -r --from-paths .

cd ~/catkin_ws

catkin_make -DCMAKE_BUILD_TYPE="Release"

Before running kinect2_bridge, we must run ROS core in another terminal window by using

the command:

 roscore

Once running, we can launch kinect2_bridge with the following command:

roslaunch kinect2_bridge kinect2_bridge.launch

When browsing through the terminal window, take note of the Kinect Serial Number, which we

will use later to calibrate it.

We can then see what kinect2_bridge would pass to our ROS applications by running the

following command:

rosrun kinect2_viewer kinect2_viewer kinect2 sd cloud

The first thing you will notice is that the cameras are not calibrated to each other. This is because

the cameras are physically offset from one another as seen in the picture below:

https://github.com/code-iai/iai_kinect2

11

Figure 1: RGB Camera and IR Sensor Orientation on Kinect Mainboard

This offset will cause the IR data to not overlap with the RGB data. This will cause problems later

when detecting obstacles because the sensor isn’t portraying where objects actually are in real

space.

Below is a photo of my camera before calibration. The IR Sensor point cloud data is laid on top of

the RGB sensor data. Notice the corners of the box are not aligned:

Figure 2: Pre-Calibration Photo – RGB and IR Sensor are Not Aligned

12

We can correct this error by running a calibration process found here:

https://github.com/code-iai/iai_kinect2/tree/master/kinect2_calibration#calibrating-the-kinect-

one

For my calibration, I used the chess5x7x0.03.pdf pattern. It is very important you print this file

without any scaling otherwise the cameras will not be properly calibrated. Using a digital caliper

ensure the points of the squares are 3 cm apart diagonally. After securing the calibration image to

a rigid board on a tripod, and holding the Kinect camera fixed on a second tripod we can begin

calibration with the following process:

First, we limit the frame rate of the kinect2_bridge using the following command:

rosrun kinect2_bridge kinect2_bridge _fps_limit:=2

 Then we create a directory for the calibration data files using the following command:

mkdir ~/kinect_cal_data; cd ~/kinect_cal_data

Then we must record screenshots with the calibration photo in different orientations ideally

covering the entire viewing window at different angles. I took approximately forty photos for each

of the four steps, 160 total.

First, we must calibrate the RGB camera with the record command:

rosrun kinect2_calibration kinect2_calibration chess5x7x0.03 record

color

The calibration process looks for changes in color horizontally and vertically in repetitious

patterns. We provided the calibration script with the pattern we are using. It is now aware we will

have 6x8 squares arranged in a 5” x 7” checkerboard pattern with 3 cm diagonal spacing.

Considering these are given known values, it can map the number of pixels to a distance to correct

any image distortion. Below are some examples:

https://github.com/code-iai/iai_kinect2/tree/master/kinect2_calibration#calibrating-the-kinect-one
https://github.com/code-iai/iai_kinect2/tree/master/kinect2_calibration#calibrating-the-kinect-one

13

Figure 3: RGB Camera Calibration Example

Figure 4: IR Sensor Calibration Example

14

After a decent sample set is captured, we must calibrate our intrinsics using the data set using the

following command:

rosrun kinect2_calibration kinect2_calibration chess5x7x0.03 calibrate

color

We repeat this process for the remaining three cycles:

 rosrun kinect2_calibration kinect2_calibration chess5x7x0.03 record ir

rosrun kinect2_calibration kinect2_calibration chess5x7x0.03 calibrate

ir

rosrun kinect2_calibration kinect2_calibration chess5x7x0.03 record

sync

rosrun kinect2_calibration kinect2_calibration chess5x7x0.03 calibrate

sync

rosrun kinect2_calibration kinect2_calibration chess5x7x0.03 record

depth

rosrun kinect2_calibration kinect2_calibration chess5x7x0.03 calibrate

depth

This was the set up for my calibration photos:

Figure 5: Physical Setup of Kinect and Calibration Photo

I moved around the checkerboard calibration photo to fill the entire field of view for each one of

the cycles (Color, IR, Sync, Depth). Below are some of my calibration photos.

15

Figure 6: RGB Camera Calibration Sample Set

Figure 7: IR Sensor Calibration Sample Set

16

Once completed, we take our serial number captured earlier, which for my case was 021177340347

and we create a folder with that number as its name:

roscd kinect2_bridge/data; mkdir 021177340347

We now copy the following generated calibration files from the kinect_cal_data directory

and paste them in our Catkin workspace kinect2_bridge/data/021177340347

directory:

calib_color.yaml

calib_depth.yaml

calib_ir.yaml

calib_pose.yaml

Here is a screenshot showing the distortion coefficients within these calibration yaml files:

Figure 8: Distortion Coefficients Within the YAML Files

Then we restart our kinect2_bridge, which will now use our calibration parameters, by

running the following command:

roslaunch kinect2_bridge kinect2_bridge.launch

17

Below you will see the point cloud is now in alignment with the RGB camera. You can see the

slight distortion in IR overlay to account for the physical separation between the sensors:

Figure 9: Post-Calibration Photo – RGB and IR Sensors Aligned

If your results do not look like my calibration photos, you will need to repeat the calibration process

with a larger data set. My first attempt with 12 photos per cycle (48 total) was not enough. I had

to expand my data set to 40 photos per cycle (160 total) to have decent results. The author of the

kinect2_calibration repository states data sets over 100 photos per cycle (400 total) will

have very accurate calibration as seen by his data charts and resulting photos:

https://github.com/code-iai/iai_kinect2/tree/master/kinect2_calibration#calibrating-the-kinect-

one

Once the calibration is finished, we now use the kinect2_bridge to publish data to ROS

topics, which we can use in applications such as RViz. We use the following command:

roslaunch kinect2_bridge kinect2_bridge.launch publish_tf:=true

Then in another window, we run RViz with the following command:

rosrun rviz rviz

https://github.com/code-iai/iai_kinect2/tree/master/kinect2_calibration#calibrating-the-kinect-one
https://github.com/code-iai/iai_kinect2/tree/master/kinect2_calibration#calibrating-the-kinect-one

18

We then change our Frame to kinect2_link. Then we can import models of our prototype

vehicle, import models of the Kinect camera and its physical location in 3D Space. Then we can

add features to our camera via the topics tab. Now we can assess the performance of our calibrated

Kinect camera within ROS.

19

Chapter 4: Results

I then moved my testing outdoors. I followed University of La Laguna’s recommendation by

placing the Kinect ~ 12” off the ground, tilted slightly downward. Here is a picture of my test

apparatus:

Figure 10: Outdoors Testing Layout

I used a tape measure to mark one-foot increments. I placed soda cans every 12 inches apart from

the Kinect. There are 6 cans with the furthest being 7 feet away from the Kinect. Soda cans are

similar in height to curbs which make them great for testing, see below:

Figure 11: Height Comparison to Curb

20

I loaded the Protonect test software to ensure the Kinect was properly set up outdoors. Note

Protonect doesn’t use the calibration files we took earlier as it is a configuration verification tool.

Figure 12: Protonect Test Software Confirms Kinect Configuration

I then ran RViz and added the Kinect Point Cloud and RGB ROSTopics:

Figure 13: RViz Showing Cans vis Point Cloud ROSTopic

21

If we map colors to distance on the point cloud, we can get a better idea of what the Kinect sees:

Figure 14: 3D Isometric View of Color Mapped Point Cloud

Figure 15: 3D Top View of Color Mapped Point Cloud

22

Figure 16: 3D Front View of Color Mapped Point Cloud

We can switch to 2D as well in both Color Depth and Grayscale:

Figure 17: 2D Front View of Color Mapped Point Cloud

23

Figure 18: 2D Front View of Grayscale Point Cloud

Below we have the Infrared Sensor Data without Point Clouds:

Figure 19: 2D Front View of Infrared Raw Image

24

Here are some additional photos I took using Protonect’s viewer where we can see multiple views

simultaneously:

Figure 20: Protonect Viewer – Box 2 Feet Away from Kinect

Figure 21: Protonect Viewer – Box 7 Feet Away from Kinect

25

Chapter 5: Conclusion

After following the recommendations of the University of La Laguna students, we were able to

achieve similar results. By placing the Xbox Kinect camera low to the ground, the Kinect is able

to distinguish the difference between its own infrared signals and external light radiation

interference.

For future research, if we conduct a larger calibration set, we can have higher accuracy similar to

those of the Kinect2_calibration repository author. Once fixed to a golf cart, or other autonomous

vehicle, and ground clearances are known, obstacle height can become a more useful metric. In

the Verdino project, they took the normal lines of the surfaces and determined if they were

navigable by the golf cart. This was useful in mobile path planning when attempting to navigate

on slopes. These features that are normally considered obstacles, combined with their software

implementation, can be seen as navigable surfaces to the robot.

From this research, we can see that the Xbox Kinect V2 Sensor is a very capable and cost-effective

solution that can be purposed for computer vision applications. Although with its increasing age,

discontinuation of parts, and diminishing software support online, it may not be the best solution

to implement compared to others offered on the market. There has been an increasing emergence

of RealSense cameras being used in ROS for robotics applications. RealSense technologies have

similar hardware such as depth sensors, RGB sensors, and infrared projectors. They are capable of

performing depth, position, and orientation tracking as well.

With the emergence of these cost-effective hardware components we are seeing engineers

repurpose these sensors into new applications. Throughout this research project, I have seen

lightweight manufacturing robots, conveyor belt applications, 3D scanning, and many other unique

uses of these sensors. With software such as Robot Operating System, we are creating smarter

robots that utilize sensor fusion to more accurately sense and manipulate its environment. With

further development, these different applications will improve quality of life in so many different

industries.

26

Reference URLs:

https://github.com/code-iai/iai_kinect2

Tools for using Kinect One (Kinect V2) in ROS

https://github.com/code-iai/iai_kinect2/tree/master/kinect2_calibration

OpenCV tool for calibrating two cameras to each other

https://github.com/code-iai/iai_kinect2/issues/181

Kinect V2 calibration – No distance sample data for depth calibration fix

https://github.com/code-iai/iai_kinect2/issues/9

Fix for dependencies with libfreenect2

https://github.com/code-iai/iai_kinect2/issues/332

OpenCL registration fix for kinect2_bridge

Instructions for building make files for Kinect2_bridge and modifying ~/.bashrc

https://github.com/code-iai/iai_kinect2/issues/217

Compiling workspace to fix roslaunch kinect2_bridge launch files

https://github.com/code-iai/iai_kinect2/issues/153

How to enable publishing for other applications to use kinect2_bridge data

https://github.com/code-iai/iai_kinect2/issues/360

How to test publishing is working using rostopics

https://github.com/OpenKinect/libfreenect2

OpenKinect / libfreenect2 – Open source drivers for Kinect V2

https://github.com/OpenKinect/libfreenect2/wiki/Troubleshooting

OpenKinect / libfreenect2 – Troubleshooting Wiki

https://github.com/OpenPTrack/open_ptrack/issues/19

Explanation for modifying udev rules workaround for Kinect detection by modifying USB

Vendor/Product IDs.

https://groups.google.com/forum/#!topic/openkinect/qdCWdXGxIog

Using dmesg to find Vendor / Product ID necessary for augmenting udev rules

https://answers.ros.org/question/210242/useing-rviz-from-kinect-v2-xbox-one/

Kinect2_bridge ROS Topics for RVIZ

https://www.choitek.com/uploads/5/0/8/4/50842795/ros_kinect.pdf

Tutorial for vision, mapping, and localization with the Kinect V1 in ROS

https://github.com/code-iai/iai_kinect2
https://github.com/code-iai/iai_kinect2/tree/master/kinect2_calibration
https://github.com/code-iai/iai_kinect2/issues/181
https://github.com/code-iai/iai_kinect2/issues/9
https://github.com/code-iai/iai_kinect2/issues/332
https://github.com/code-iai/iai_kinect2/issues/217
https://github.com/code-iai/iai_kinect2/issues/153
https://github.com/code-iai/iai_kinect2/issues/360
https://github.com/OpenKinect/libfreenect2
https://github.com/OpenKinect/libfreenect2/wiki/Troubleshooting
https://github.com/OpenPTrack/open_ptrack/issues/19
https://groups.google.com/forum/#!topic/openkinect/qdCWdXGxIog
https://answers.ros.org/question/210242/useing-rviz-from-kinect-v2-xbox-one/
https://www.choitek.com/uploads/5/0/8/4/50842795/ros_kinect.pdf

27

https://github.com/OpenKinect/libfreenect2#debianubuntu-1404

Open source drivers for the Kinect for Windows V2

http://wiki.ros.org/indigo/Installation/Ubuntu

ROS Indigo Installation for Ubuntu 14.04.1

http://wiki.wpi.edu/robotics/ROS_Commands

Common ROS Commands

http://wiki.wpi.edu/robotics/ROS_File_Types

ROS File Types

http://wiki.wpi.edu/robotics/ROS_Terms

Explanation of common ROS Terms

http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment

Tutorial for configuring a ROS Environment

https://answers.ros.org/question/308566/apt-get-to-install-ros-package-with-specific-version/

Installing older ROS packages with specific versions

https://answers.ros.org/question/240235/how-to-install-packages-from-github/

Installing github packages for use in ROS

http://wiki.ros.org/catkin#Installing_catkin

Installing Catkin within Ubuntu

https://subscription.packtpub.com/book/hardware_and_creative/9781782175193/1/ch01lvl1sec1

1/creating-a-catkin-workspace

Instructions for creating Catkin workspaces

http://wiki.ros.org/catkin/Tutorials/create_a_workspace

Additional instructions for creating Catkin workspaces

http://wiki.ros.org/catkin/Tutorials/using_a_workspace

Instructions for using a Catkin workspace

http://wiki.ros.org/catkin/commands/catkin_make

Catkin make command instructions

http://wiki.ros.org/ROS/Tutorials/CreatingPackage

Creating packages within Catkin

http://wiki.ros.org/catkin/workspaces

Building packages within Catkin

https://github.com/OpenKinect/libfreenect2#debianubuntu-1404
http://wiki.ros.org/indigo/Installation/Ubuntu
http://wiki.wpi.edu/robotics/ROS_Commands
http://wiki.wpi.edu/robotics/ROS_File_Types
http://wiki.wpi.edu/robotics/ROS_Terms
http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment
https://answers.ros.org/question/308566/apt-get-to-install-ros-package-with-specific-version/
https://answers.ros.org/question/240235/how-to-install-packages-from-github/
http://wiki.ros.org/catkin#Installing_catkin
https://subscription.packtpub.com/book/hardware_and_creative/9781782175193/1/ch01lvl1sec11/creating-a-catkin-workspace
https://subscription.packtpub.com/book/hardware_and_creative/9781782175193/1/ch01lvl1sec11/creating-a-catkin-workspace
http://wiki.ros.org/catkin/Tutorials/create_a_workspace
http://wiki.ros.org/catkin/Tutorials/using_a_workspace
http://wiki.ros.org/catkin/commands/catkin_make
http://wiki.ros.org/ROS/Tutorials/CreatingPackage
http://wiki.ros.org/catkin/workspaces

28

https://stackoverflow.com/questions/48434373/getting-kinect-v2-to-work-with-ubuntu-16-04-

and-ros-kinetic

Explanation for Catkin / Libfreenect2 integration

http://wiki.ros.org/catkin_or_rosbuild

Comparison for Catkin versus rosbuild (Limitations Explanation)

http://wiki.ros.org/catkin/migrating_from_rosbuild

Explanation for migrating away from rosbuild to catkin

https://cgold.readthedocs.io/en/latest/first-step/installation.html

CMake instructions / tips

https://github.com/ethz-asl/kinect2-ros

Tool for using Kinect One V2 in ROS

http://wiki.ros.org/depth_image_proc

ROS built-in tool for processing Depth Images (references OpenNI)

[Not recommended - use only for example / reference]

https://answers.ros.org/question/210242/useing-rviz-from-kinect-v2-xbox-one/

Recommendation for calibrating camera before using within RViz

https://answers.ros.org/question/242286/how-to-find-the-urdf-of-kinect-v2/

URDF Explanation for RViz / Gazebo Applications

https://github.com/code-

iai/iai_robots/blob/master/iai_kinect2_description/urdf/kinect2.urdf.xacro

URDF Location for RViz / Gazebo Applications

http://wiki.ros.org/rtabmap_ros/Tutorials/HandHeldMapping

RTABMAP – Mapping and Localization using OpenNI

[Not recommended - use only for example / reference]

http://wiki.ros.org/openni_launch

OpenNI Wiki – Used for converting depth/RGB/IR to point clouds and depth/disparity images.

https://answers.ros.org/question/235440/test-kinectno-devices-connected-waiting-for-devices-to-

be-connected/

Explaining why OpenNI is not recommended and suggesting freenect_stack (which is no longer

recommended either)

http://wiki.ros.org/rgbd_launch

RGBD_Launch – Launch files for RGB-D devices such as the Kinect in ROS

https://stackoverflow.com/questions/48434373/getting-kinect-v2-to-work-with-ubuntu-16-04-and-ros-kinetic
https://stackoverflow.com/questions/48434373/getting-kinect-v2-to-work-with-ubuntu-16-04-and-ros-kinetic
http://wiki.ros.org/catkin_or_rosbuild
http://wiki.ros.org/catkin/migrating_from_rosbuild
https://cgold.readthedocs.io/en/latest/first-step/installation.html
https://github.com/ethz-asl/kinect2-ros
http://wiki.ros.org/depth_image_proc
https://answers.ros.org/question/210242/useing-rviz-from-kinect-v2-xbox-one/
https://answers.ros.org/question/242286/how-to-find-the-urdf-of-kinect-v2/
https://github.com/code-iai/iai_robots/blob/master/iai_kinect2_description/urdf/kinect2.urdf.xacro
https://github.com/code-iai/iai_robots/blob/master/iai_kinect2_description/urdf/kinect2.urdf.xacro
http://wiki.ros.org/rtabmap_ros/Tutorials/HandHeldMapping
http://wiki.ros.org/openni_launch
https://answers.ros.org/question/235440/test-kinectno-devices-connected-waiting-for-devices-to-be-connected/
https://answers.ros.org/question/235440/test-kinectno-devices-connected-waiting-for-devices-to-be-connected/
http://wiki.ros.org/rgbd_launch

29

https://answers.ros.org/question/143496/roslaunch-is-neither-a-launch-file-in-package-nor-is-a-

launch-file-name/

Explanation for roslaunch launch file packages / names.

Reference for source setup / bash files.

http://wiki.ros.org/freenect_launch

Tutorial for freenect_launch [Not recommended - use only for example / reference]

https://github.com/ros-drivers/freenect_stack/issues

Freenect_stack Issues [Not recommended - use only for example / reference]

https://askubuntu.com/questions/886588/kinect-2-on-ubuntu-16-04-device-not-listed-in-lsusb

Explanation for installing dependencies, navigating lsusb, building libfreenect2

https://answers.ros.org/question/207047/kinect-v2-no-devices-connected-ive-tried-everything/

Recommendation to update from 14.04 to 14.04.1 for USB 3 recognition in Linux kernel to fix

Kinect2 USB controller problems

https://www.youtube.com/watch?v=cjC5tXpVXzE

Tutorial for Kinect V1 in ROS

https://www.youtube.com/watch?v=YZwlt2msvpI

Tutorial for Kinect V2 in ROS including RViz and rtabmap [Dead Source URL]

https://www.youtube.com/watch?v=URhu-fAUWWQ

Tutorial for installing libfreenect2 on Nvidia Jetson TK1

https://www.youtube.com/watch?v=MToCOoCJVGs

ROS (14.04) RViz Pose Example using Kinect V2 and rtabmap

https://www.youtube.com/watch?v=zUeZnfQoBOo

KinectV2 Demo on Robot Indoors

https://www.youtube.com/watch?v=_qiLAWp7AqQ

Kinect Navigation / Mapping / Planning example with loop closures.

https://www.researchgate.net/publication/283326333_An_Indoor_Obstacle_Detection_System_

Using_Depth_Information_and_Region_Growth

Indoor Obstacle Detection System Using Depth Information and Region Growth

https://angel.co/projects/182175-verdino

Verdino Project Page by Nestor Morales Hernandez [Author]

https://www.reddit.com/r/linux4noobs/comments/7vz150/remote_desktop_to_ubuntu/

Quality of Life optimization suggestion for Remote Desktop on Ubuntu

https://answers.ros.org/question/143496/roslaunch-is-neither-a-launch-file-in-package-nor-is-a-launch-file-name/
https://answers.ros.org/question/143496/roslaunch-is-neither-a-launch-file-in-package-nor-is-a-launch-file-name/
http://wiki.ros.org/freenect_launch
https://github.com/ros-drivers/freenect_stack/issues
https://askubuntu.com/questions/886588/kinect-2-on-ubuntu-16-04-device-not-listed-in-lsusb
https://answers.ros.org/question/207047/kinect-v2-no-devices-connected-ive-tried-everything/
https://www.youtube.com/watch?v=cjC5tXpVXzE
https://www.youtube.com/watch?v=YZwlt2msvpI
https://www.youtube.com/watch?v=URhu-fAUWWQ
https://www.youtube.com/watch?v=MToCOoCJVGs
https://www.youtube.com/watch?v=zUeZnfQoBOo
https://www.youtube.com/watch?v=_qiLAWp7AqQ
https://www.researchgate.net/publication/283326333_An_Indoor_Obstacle_Detection_System_Using_Depth_Information_and_Region_Growth
https://www.researchgate.net/publication/283326333_An_Indoor_Obstacle_Detection_System_Using_Depth_Information_and_Region_Growth
https://angel.co/projects/182175-verdino
https://www.reddit.com/r/linux4noobs/comments/7vz150/remote_desktop_to_ubuntu/

30

https://symless.com/synergy

Quality of Life – share keyboard / mouse across bare metal machines

https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/learn-more/use-local-

resources-on-hyper-v-virtual-machine-with-vmconnect

Limitations of local resources on Ubuntu virtual machines

[Not recommended - use only for example / reference]

https://xpra.org/

Remote Desktop application for Ubuntu [Not recommended - use only for example / reference]

https://www.howtoforge.com/how-to-install-x2goserver-on-ubuntu-14.04-as-vnc-alternative

Remote Desktop application for Ubuntu [Not recommended - use only for example / reference]

https://symless.com/synergy
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://xpra.org/
https://www.howtoforge.com/how-to-install-x2goserver-on-ubuntu-14.04-as-vnc-alternative

31

Appendix A

calib_color.yaml

%YAML:1.0

cameraMatrix: !!opencv-matrix

 rows: 3

 cols: 3

 dt: d

 data: [1.1617963678371680e+03, 0., 9.5093383475668224e+02, 0.,

 1.2110595550377591e+03, 5.2654387243856411e+02, 0., 0., 1.]

distortionCoefficients: !!opencv-matrix

 rows: 1

 cols: 5

 dt: d

 data: [5.4341306125840788e-02, -5.2326511693269059e-02,

 -1.4156323021479405e-02, -4.5905877433509764e-03,

 1.3436815684838805e-02]

rotation: !!opencv-matrix

 rows: 3

 cols: 3

 dt: d

 data: [1., 0., 0., 0., 1., 0., 0., 0., 1.]

projection: !!opencv-matrix

 rows: 4

 cols: 4

 dt: d

 data: [1.1617963678371680e+03, 0., 9.5093383475668224e+02, 0., 0.,

 1.2110595550377591e+03, 5.2654387243856411e+02, 0., 0., 0., 1.,

 0., 0., 0., 0., 1.]

32

Appendix B

calib_depth.yaml

%YAML:1.0

depthShift: -1.4106589553147419e+01

33

Appendix C

calib_ir.yaml

%YAML:1.0

cameraMatrix: !!opencv-matrix

 rows: 3

 cols: 3

 dt: d

 data: [3.8952059999562010e+02, 0., 2.5673175566817639e+02, 0.,

 4.0711960284607386e+02, 2.1195820796180755e+02, 0., 0., 1.]

distortionCoefficients: !!opencv-matrix

 rows: 1

 cols: 5

 dt: d

 data: [1.2745334821987084e-01, -3.3936384531433733e-01,

 -5.5842671244626932e-03, -2.3722223949202751e-03,

 1.0172808241454298e-01]

rotation: !!opencv-matrix

 rows: 3

 cols: 3

 dt: d

 data: [1., 0., 0., 0., 1., 0., 0., 0., 1.]

projection: !!opencv-matrix

 rows: 4

 cols: 4

 dt: d

 data: [3.8952059999562010e+02, 0., 2.5673175566817639e+02, 0., 0.,

 4.0711960284607386e+02, 2.1195820796180755e+02, 0., 0., 0., 1.,

 0., 0., 0., 0., 1.]

34

Appendix D

calib_pose.yaml

%YAML:1.0

rotation: !!opencv-matrix

 rows: 3

 cols: 3

 dt: d

 data: [9.9995022488478558e-01, -8.2249935015495275e-03,

 5.6477636960330958e-03, 8.1240660106269812e-03,

 9.9981092762976043e-01, 1.7666594000347129e-02,

 -5.7920034808118664e-03, -1.7619831838516332e-02,

 9.9982798231578851e-01]

translation: !!opencv-matrix

 rows: 3

 cols: 1

 dt: d

 data: [-6.4840180891407320e-02, -7.2503333571428330e-03,

 3.2835706161128547e-02]

essential: !!opencv-matrix

 rows: 3

 cols: 3

 dt: d

 data: [-2.2476548831694171e-04, -3.2701748181810132e-02,

 -7.8291812610523301e-03, 3.2458517206651723e-02,

 -1.4125465534796490e-03, 6.5014475542836958e-02,

 6.7232065612618510e-03, -6.4887555349465983e-02,

 -1.1045569811989500e-03]

fundamental: !!opencv-matrix

 rows: 3

 cols: 3

 dt: d

 data: [-3.7834409191198661e-07, -5.2666773679931942e-05,

 6.1268997240825317e-03, 5.2414387906345340e-05,

 -2.1823933439006541e-06, 2.7900396704276943e-02,

 -1.4090570396367210e-02, -7.0179015355884777e-02, 1.]

