Robert C. Crimmins

4 Ashby Court, Manalapan, NJ 07726 | 732-682-9829 | rccrimmins@wpi.edu | www.RobertCrimmins.com

OBJECTIVE: Detail-oriented Electrical Engineer with 5+ years of experience looking for exciting opportunities

EDUCATION:

Worcester Polytechnic Institute

worcester i orytechnic institute	
Master of Science: Electrical and Computer Engineering	December 2018
 Bachelor of Science: Electrical and Computer Engineering 	May 2016
Bachelor of Science: Robotics Engineering	May 2016
PROFESSIONAL EXPERIENCE:	
Argo AI – Hardware Engineer, Princeton, NJ	October 2021 – Present
• Designed schematics and layouts for multilayer high-speed rigid and flex PCBs	
• Characterized, verified, and validated all PCBAs within the LiDAR Sensor Head	
• Triaged and resolved issues for current and legacy LiDAR sensors on fleet vehicles	
• Collaborated with OEM partners towards automotive qualifying Argo LiDAR (ISO,	USCAR, SAE, AEC)
• Scaled prototype designs to 2000+ unit production with global contract manufacturer	s (DFM, fixtures, calibration)
• Incorporated and validated automotive functional safety techniques at the board level	within the LiDAR
	bruary 2020 – October 2021
• Designed PCBAs to bring up our next-generation low-power, small form factor, shor	t wave infrared cameras
Developed electrical equipment for evaluating and characterizing readout integrated	circuits (ROICs)
• Resolved day to day technical problems on production lines to minimize disruption	
Wrote python scripts to automate data collection for performance and reliability testing	ng of products
• Devised a modular and scalable test fixture solution for current and future camera pla	
Self-Employed – Property Manager, New York, NY Fel	bruary 2019 – October 2019
 Conducted full renovations for multiple apartments and properties 	
• Learned multiple skilled trades – networks, plumbing, electrical, framing, painting, ti	
	August 2017 – January 2018
Developed a high-performance power distribution and communication architecture for	or the Model Y
 Evaluated impacts of implementing a decentralized architecture 	
Built a full-scale operational prototype vehicle utilizing the new architecture for perfection	0
Improved processes to streamline and automate wire harness assembly into production	
Implemented significant cost reduction methods within vehicle platform and assembl	-
 Patented Wiring System Architecture - Application #16231314 - Publication #201903 	
	August 2016 – January 2017
• Created a data acquisition printed circuit board for a family of sensors on the vehicle	
Contributed towards development of the Block 4 avionics upgrade for Falcon 9 and F	•
Built and tested hardware-in-the-loop test rack used to simulate various launch scena	
Drew wiring harness schematics for testing and engineering development application	
Developed onshore and offshore landing pad network and power architecture for pos	
• Designed a payload separation simulator to validate flight computer electrical signal	performance
SKILLS:	
Hardware: Xilinx Zynq MPSoC, Altera Cyclone V, ARM Cortex M-Series, Atmega (AVR).	, MSP430, Arduino
Software: C, C++, Python, Java, MATLAB, Assembly, ROS, HTML, CSS	
FPGA: Embedded Systems, RTOS, Verilog, VHDL, Logic Synthesis, Simulation, Testable I	Design

Applications: Altium PCB, Zuken E3, Visio, Multisim, Subversion, NX, CATIA, SharePoint, Salesforce, ENOVIA

PROJECTS:

Robocart: Converted a golf cart into a drive-by-wire autonomous ground vehicle with vision and sensor networks **Computer Vision**: Incorporated obstacle detection, navigation, mapping, path planning algorithms in ROS **Robots**: Integrated actuators, sensors, feedback, signal processing, and networks on numerous platforms **Robotic Arms**: Developed control software for light assembly line manufacturing using a Dobot robotic arm **Networking**: Built enterprise network with fault tolerant data arrays, scripting, automation, and virtual machines